
MATHEMATICS OF COMPUTATION, VOLUME 30, NUMBER 133

JANUARY 1976, PAGES 132-142

The QR Algorithm and Hyman's Method
on Vector Computers *

By Robert C. Ward

Abstract. The implementation on vector computers of the QR algorithm and of

iterative schemes based on obtaining the determinant and its derivatives by Hyman's

method are presented. It is shown that iterative schemes based on Hyman's method

will probably be more efficient than the QR algorithm on vector computers for

large matrices. A theoretical comparison of the Laguerre iterative scheme with the

QR algorithm is presented using the latest available CDC STAR-100 instruction exe-

cution times. In addition, the results of several test cases run on the Laguerre-Hyman

algorithm on a serial computer are reported.

1. Introduction. The use of the QR algorithm for numerically solving the al-
gebraic eigenvalue problem Ax = Xx, where A is an n x n upper Hessenberg matrix,
has steadily increased since its introduction by Francis [1] in 1961. This algorithm
and its many variants, such as the QL algorithm and the rational QR algorithm, have
become fixtures in most mathematical subroutine libraries. In fact, most of the algo-
rithms recommended by Wilkinson and Reinsch [6] for solving the various classes of
eigenvalue problems are based upon the QR algorithm. Since the operations found in
this algorithm are basically vector operations, one would expect that the QR algorithm
would be the basic eigenvalue solver for the new vector computers, such as the Control
Data Corporation STAR and the Texas Instruments ASC computers. The purpose of
this paper is to examine the QR algorithm on vector computers and to compare these
results with iterative schemes based on obtaining the determinant and its derivatives by
Hyman's method. Particular attention will be paid to the Laguerre iterative scheme.

2. Comparison Basis on Vector Computers. On serial computers, the relative
merits of linear algebra algorithms were determined primarily by counting the number
of arithmetic operations. This operation count was usually expressed in terms of the
highest power of n, the order of the matrix problem. Using the problem of solving
a system of linear equations as an example, the operation count for the Gaussian
elimination algorithm is n3/3 while the operation count for the Gauss-Jordan elimina-
tion algorithm is n3/2. Hence, the former algorithm should usually be preferred on
serial computers.

The method of comparing algorithms on vector computers will be slightly dif-
ferent due to the nature of these computers. Since vector operations are expected to
be, and should be, the dominant time-consuming operations for linear algebra algorithms,

Received January 20, 1975; revised June 4, 1975.
AMS (MOS) subject classifications (1970). Primary 65F15; Secondary 68A10, 15A18.
Key words and phrases. Vector computers, eigenvalues, QR algorithm, Hyman's method.
*A portion of this work was completed while the author was employed by NASA, Langley

Research Center, Hampton, Virginia.
Copyright i 1976, American Mathematical Society

132

QR ALGORITHM AND HYMAN'S METHOD 133

the relative merits of these algorithms on vector computers will be determined by sum-
ming the number of clocks (minor cycles) required for the vector instructions. One
cannot merely count the number of arithmetic operations on these computers since
the time required for a single arithmetic operation is not constant throughout the algo-
rithm. This is easily seen by examining the timing equation for vector instructions.
The general equation for determining the number of clocks required for a vector in-
struction is given by S + crl/pl , where rx] denotes the smallest integer greater than or
equal to x, S is called the start-up time, c is called the incremental cost, p is called the
increment size and is related to memory access, and 1 denotes the length of the vector.

The assumption that S >> c/p will be used throughout this paper. This assump-
tion is true on the existing vector computers and is expected to be a general character-
istic of all vector computers. Thus, considerable time is spent initially to start the vec-
tor instruction and this time is independent of the length of the vector. This indicates
that the use of long vectors is advantageous on these computers. Note, however, that
the maximum number of "free" arithmetic operations in a vector instruction is p and
increasing the vector length without sufficient justification would be inefficient. This
is a significant difference from parallel computers where there is no penalty for using
all the available processors even if these extra generated answers are never used.

Since the values of S, c, and p are expected to depend upon the type of vector
instruction to be executed, a subscript notation will be used in this paper to denote
the various values of these parameters. A subscript of +, *, and f denotes addition/
subtraction, multiplication, and dot product, respectively. For example, S. denotes
the start-up time for a vector dot product instruction, c+ denotes the incremental
cost for a vector addition or subtraction instruction, etc.

An important point which should not be overlooked is that some vector compu-
ters require the components of each of the vectors in a vector instruction to be in con-
tiguous storage locations. This paper will only consider vector computers of this type
(e.g. CDC STAR). Thus, algorithms must know whether the matrix is stored column-
wise or rowwise and set up the vector instructions accordingly.

3. QR Iteration Clock Count. One double shift QR iteration on an n x n up-
per Hessenberg matrix consists of applying a sequence of n - 1 Householder similarity
transformations to the matrix. The 4th transformation or step in this sequence will
be briefly described for a matrix of order 8 stored columnwise in a vector computer.
Before the 4th transformation is applied, the matrix A has the following form:

xx x x x x xX

x x x x x x x x

x x x x xx x

x x x x x x

x x x x x x

x x x x x x

x x x

134 ROBERT C. WARD

The 4th Householder transformation P4 is given by the expression I - uvT where u-
(0, 0, 0, 1, u2, U3, 0, O)T and VT =(0, 0, 0, V1, V2, V3, 0, 0). The vectors u and v
are chosen such that a53 and a63 are annihilated. Since the matrix is stored column-
wise, the premultiplication of A by P4 requires one dot product, one vector multipli-
cation (actually, a vector multiplied by a scalar which will be treated as a vector multi-
plication in this paper), and one vector subtraction for each of the last 5 columns of
A. The vector length for each of these instructions is 3.

The matrix A now has the following form:

xx x x x x xx

x x x x x x x x

x x x x x x x

x x x x x x

0 x x x x x

0 x x x x x

x x

Recalling that the matrix is stored columnwise and denoting the kth column of

A by a(k), the postmultiplication of A by P4 begins by multiplying a(5) and a(6) by

U2 and u3, respectively. Then, a(4) is added to u2a(5); and thtis sum is then added to
U a(6). This vector sum (a(4) + U a(5) + U a(6)) is multiplied by v1 and subtracted

from a(4) , then multiplied by v2 and subtracted from a(), and finally multiplied by

V3 and subtracted from a(6). Thus, the postmultiplication requires one vector multi-

plication and one vector addition of vector length 6, and four vector multiplications

and four vector additions/subtractions of vector length 7.

TABLE I

Computation of A' = PkA in QR A .gori~thm

Operation Serial Count Vector Count

wi = uTaMi 3(+ I) multiplications |(n - k + I) dot products of vector|

i-=k, k + I,. , n 2(n - k + 1) additions length 3

xMt = wiu 2(n - k + 1) multiplications (n - k + I) vector multiplications
i = k, k + I,...>n of vector length 3

a'(') = a(') - x ~ 3(n - k + 1) subtractions (n -k + 1) vector subtractions

i = k, k + 1, . . .,. n |_ of vector length 3

For the kth step with 2 < k < n - 2, the vector and serial operations required

in the premultiplication of A by Pk is given in Table I with the following notation:

QR ALGORITHM AND HYMAN'S METHOD 135

A' = (I - uvT)A = PA,

UT(0,..., 0, 1, U2, U3, 0, ..., 0),

VT =(0,. , ,V1, V2, V3, 0, .. ., 0).

Similarly for k = 1, one dot product of vector length 2, (n - 1) dot products of vector

length 3 and n vector multiplications and n vector additions/subtractions of vector

length 3 are required; and for k = n - 1, two dot products, two vector multiplications,

and two vector additions/subtractions with a vector length of 2 are required. Thus, the

total number of clocks required for the premultiplications in one QR iteration on a

vector computer is given by

EEn -k + 1){s] + S? + c*[- +S +C

T
z P*[+ +[P+ [p] T [PT]

+s* + s +c - + c*[j3 ?c+ [-3} (2n2 + n) + 0(1).

The vector and serial operations required in the postmultiplication of A' by Pk

for k 6 n - 3 is given in Table 2 where

Ar" = A(I - T) = A'Pk

Similarly for k = n - 2, five vector multiplications and five vector additions/subtractions

of vector length n are required, and for k = n - 1, three vector multiplications and

three vector additions/subtractions of vector length n are required. Thus, the total

number of clocks required for the postmultiplications in one QR iteration on a vector

computer is given by

S* + C] + S+ + C+[k] +4 (S*+cR l + S+ + c+ [k)}

+ 8{S*?c[j?S+? c+[CL]}

C 2 + +]2 + 5 [S + S+ + +c n + 0(1).

The total number of clocks for one QR iteration eliminating the order of unity term

is then given by

2 [
F

] +C*
-

+C[P+J \P P+/J

+ 2- S + 1(S* + S+) + 5(c* + c+) + c - + C* - +c -n. 2 L LU LPJ L+J

136 ROBERT C. WARD

TABLE 2

Computation of A" = A'Pk in QR Algorithm

Operation Serial Count Vector Count

- (2) = u2aI(k+ 1) k + 2 multiplications 1 vector multiplication of

vector length k + 2

W(3) = u3aI(k+2) k + 3 multiplications 1 vector multiplication of

vector length k + 3

x = a'(k) + W(2) k + 2 additions 1 vector addition of

vector length k + 2

Y = X + W (3)k + 3 additions 1 vector addition of
vector length k + 3

Z(- = v y 3(k + 3) multiplications 3 vector multiplications
of vector length k + 3

i= 1,2,3

afl(k+i-l) = a (k+i-l) - z(') 3(k + 3) subtractions 3 vector subtractions of

vector length k + 3
i= 1,2,3

The significant point to note in this total is the start-up times appearing in the coef-
ficient of the n2 term. This indicates that one QR iteration, which required 5n2
multiplications and 5n2 additions/subtractions on a serial computer, requires 3n2/2
vector operations on a vector computer. Thus, the QR iteration does not "vectorize"

very well and possibly could be slower on a vector computer than on a reasonably
fast serial computer.

Using vectors of length 3 in the premultiplication is the reason for the poor
vectorization. One could obviously alter this by storing the matrix rowwise, but this
leads to using vectors of length 3 in the postmultiplication resulting in the same total
number of clocks as in the columnwise algorithm.

4. Clock Count for Iterations Based on Hyman's Method. In order to have a
viable algorithm to compare with the QR algorithm, the timing formula for an itera-
tive scheme where the determinant and its derivatives are obtained by Hyman's method
will be presented in this section. The determinant of (A - zI), aside from a nonzero
constant multiplier, can be computed by Hyman's method by performing a single
backsubstitution. This is illustrated by the following example where n 6:

QR ALGORITHM AND HYMAN'S METHOD 137

A-zI y b
xx xx x x x Z

x x x x x x =

x x x x x 0

x x x x g
x x

By setting yn = 1, all the components of the y vector are found using rows n through
2 consecutively of (A - zI). Using the first row of (A - zI), the value of f(z) which

differs from det(A - zI) by the factor ?a2 1a32 ...
an n-1 is then computed. The

values of f'(z) and higher derivatives can be computed in a similar fashion requiring
one backsubstitution per derivative (see Wilkinson [5]).

Howser and Lambiotte [3] have discussed in some detail the vectorization of the

backsubstitution process for the CDC STAR computer. If the matrix is stored rowwise,
the dot product instruction would be used and if the matrix is stored columnwise, a

vector multiplication followed by a vector addition/subtraction would be used. Note
that the former storage technique requires only one vector start-up while the latter re-

quires two vector start-ups. But cj,/p., is expected to be larger than c*/p* + c+Ip+;
and hence, the matrix should be stored rowwise when n is "small" and columnwise
when n is "large". In this paper, it is assumed that n is large and the matrix is stored
columnwise. Thus, the total number of clocks required to compute f(z) and the first

r - 1 derivatives of f(z) when z is real is given by

rE {S* + [k + S+ + c+ [

(2) =r[??+E?1]n2?+ rF?h + S (c)?P* + c+ + (+ C)

When z is complex, the number of clocks would be twice the above number using a
vectorization of the technique described in Wilkinson [5]. This yields the type of re-
sult expected for linear algebra algorithms on a vector computer. That is, a process
which requires on the order of n2 operations on a serial computer requires on the order
of n vector operations on a vector computer.

The Laguerre iteration scheme has been coded for the CDC 6000 series computers
at NASA, Langley Research Center to use in a comparison with the QR algorithm. The
basic roundoff error for these computers is approximately 10- 14. The salient features
of this code are as follows:

(1) The determinant and its first two derivatives are required.
(2) The criterion for accepting an eigenvalue is based on passing two tests. The

first test, which indicates that the iterates are beginning to converge, is

IXk -Xk1 1 < 107 if Ixk-1 I < 104

138 ROBERT C. WARD

IXk -Xk1 I < I Xkl 110 if IXk1 I > 10.

After passing this test, the iteration stops and xk-l is declared an eigenvalue when Ixk

Xk-1 > IXk-1 Xk-2 1.

(3) The suppression of previously computed eigenvalues is accomplished by iterat-
ing on the function g,(z) defined by

g'(Z) ~ f (Z)
TJ_1 (Z - X)

where X1, X25 . Xr are the previously computed zeros of f(z).
(4) The starting value for the iteration to each eigenvalue may be given to the

subroutine by the user. If not, the starting value for computing the first eigenvalue is
taken to be I IA II o. Thereafter, the starting value for finding the (r + 1)th eigenvalue
if g9(Xr) $ 0 is taken to be Xr - gr(Xr)lgr(Xr) where Xr is the rth eigenvalue or I IA II
if =(` 0

(5) If the convergence appears to be linear after the first test has been passed in
the acceptance criterion, an attempt is made to obtain cubic convergence by trying the
iteration assuming the eigenvalue which is being approached has multiplicity 2. If con-
vergence still appears linear, a multiplicity of 3 is tried. If this also fails, the multipli-

city is reset to 1 and the eigenvalue is found through linear convergence.

(6) The matrix is partitioned into submatrices if a negligible subdiagonal is found.

(7) After all the eigenvalues of a matrix or submatrix have been found, the sum

of these eigenvalues are compared with the trace of the matrix or submatrix. If the

test

I i - trace(A)j 10-9 if Itrace(A)I < 10-4,

n
X
xi-trace(A)

< Itrace(A) 110-5 if Itrace(A)I >10-4

fails, the iteration starts over again using a different starting value for each eigenvalue.

(8) A maximum number of thirty-two iterations are allowed to converge to

each eigenvalue.

Most of these points are discussed in detail by Parlett [4] or Chapter 7 of Wilkin-

son [5].

The starting value described in item (4) is not crucial. If a starting value which

is larger than the largest real eigenvalue is chosen, the real eigenvalues have a tendency

to be found in algebraically decreasing order. This is the motivation for using IIA II.
Gerschgorin theorems could be employed to determine another reasonable starting
value. Also, the simple choice of using 0 as the starting value has some merit.

5. Theoretical Comparison on the CDC STAR. Two CDC STAR computers
have recently been delivered to Lawrence Livermore Laboratory at Livermore, Califor-

QR ALGORITHM AND HYMAN'S METHOD 139

nia. The initial testing of these computers indicate that the actual execution times for
the basic vector instructions are close to the execution times predicted by CDC. Thus,

a theoretical comparison between the QR algorithm and the Laguerre-Hyman algorithm
can be made using this information. The predicted STAR-100 execution times (number
of clocks) for the vector instructions of interest are as follows:

Addition/subtraction: 94 + 4 [8J

Multiplication: 154 + 8]4
Dot product: 100 + 41.

Based on this timing, the number of clocks required for one QR iteration from formula
(1) is 18934n2 + 1456n, while the number of clocks for one Laguerre-Hyman iteration
from Eq. (2) is 21/4n2 + 757?2n. Thus, for every large n, one Laguerre-Hyman iteration
is faster than one QR iteration by a factor of roughly 84! These timing formulas also
indicate why the term corresponding to the second highest power of n should be in-
cluded. On vector computers, this term will probably contain most of the start-up
times and usually will be of one or two orders of magnitude greater than the term cor-
responding to the highest power of n.

To carry this comparison further, one can make some reasonable assumptions
concerning the QR and Laguerre-Hyman algorithms and obtain estimates for the num-
ber of clocks required to find all the eigenvalues of an n x n real matrix. The assump-
tions for the QR algorithm are first that the average number of iterations per eigen-
value is 134. This has been reported by Wilkinson and Reinsch [6], and it also has
been this author's experience. Second, the average order of the deflated matrix used
in the QR algorithm is 2n/3. This, at first, appears to be an unrealistic assumption
since the matrix begins with order n and is deflated by one or two until the order is
zero. Using 2n/3 for the average order instead of ?12n attempts to offset the fact that
more iterations are required while the matrix has high order than later in the algorithm.
Under these two assumptions, the total number of clocks required by the vector instruc-
tions in the QR algorithm to find all the eigenvalues of an n x n matrix is given by

1
4-n [189 4-3 n) + 1456(n3)] = 147 12 n3 + 1698 3 n

The assumption for the Laguerre-Hyman algorithm is that the average number of itera-
tions per eigenvalue is seven. This has been this author's experience on computing the
eigenvalues of twenty-five test cases by this algorithm on serial computers. These test
cases all had distinct eigenvalues and the order of matrices ranged between 5 and 75.
(Additional test cases are discussed in the next section.) Under this assumption, the
total number of clocks required by the vector instructions in the Laguerre-Hyman
algorithm to find all the eigenvalues of an n x n matrix is given by

140 ROBERT C. WARD

7n [2 757 n 15 4 n + 5302 2 n

Thus, this comparison indicates that the QR algorithm would be faster for matrices of
order 27 or smaller and the Laguerre-Hyman algorithm would be faster for matrices of
order greater than 27. For a matrix of order 100, the Lguerre-Hyman algorithm would
be faster than the QR algorithm by a factor of almost 2%.

When comparisons are actually made on the STAR computer, the order of the
matrix for which the Laguerre-Hyman algorithm becomes faster will probably be larger
than indicated in the previous paragraph. This will be due to the presence of consider-
able more logic and scalar arithmetic in the Laguerre-Hyman algorithm than in the QR
algorithm. Also, the ability of the QR algorithm to detect consecutive "small" sub-
diagonals to decrease the computations in an iteration will tend to increase this value
of n.

Another point which has not been discussed thus far is that of paging on the
STAR computer. Paging is the process of bringing a block of storage into central mem-
ory or releasing a block of storage. On this point, the Laguerre-Hyman algorithm would
have an advantage if the complete matrix could not be contained in central memory.
Each column of the matrix is required only three times in a Laguerre-Hyman iteration,
once for each of the three backsubstitutions. Since the backsubstitutions can be per-
formed simultaneously, a matrix column need only be brought into central memory
once for each iteration. In the QR algorithm, the rth column of the matrix for r * n
is required r + 1 times in only one QR iteration. The nth column is required n times.
Thus, the nth column may have to be brought into and released from central memory
n times in one QR iteration.

6. Test Results on Laguerre-Hyman Algorithm. In addition to the test cases
mentioned in the previous section, several matrices from Gregory and Karney [2] which
have eigenvalues that are numerically difficult to compute have been used as test ma-
trices for the Laguerre-Hyman algorithm. These include nondefective matrices with
multiple eigenvalues (examples 4.8 and 4.10), defective nonderogatory matrices (ex-
amples 5.11 and 5.12), a defective derogatory matrix (example 5.27), an orthogonal
matrix (example 5.22 with e = 1), and matrices which have distinct ill-conditioned
eigenvalues (examples 5.14 and 5.23 with e = 10-1O). In all cases, the Laguerre-
Hyman algorithm performed satisfactorily in that the returned eigenvalues were within
the domain of indeterminacy of the exact eigenvalues. In examples 4.10, 5.1 1, and
5.22, the algorithm reached a point where it repeatedly converged to the same eigen-
values and naturally missed some of the true eigenvalues. But the comparison with the
trace detected this error and on the second try, using different starting values, the
eigenvalues with the correct multiplicities were found. The average number of Laguerre
iterations per eigenvalue for these special matrices was 5.9.

To indicate the type of results obtained from these test cases on a CDC 6400
serial computer, the results from example 5.12 are presented in this paper. The matrix
is given by

QR ALGORITHM AND HYMAN'S METHOD 141

10 -19 17 -12 4 1
9 -18 17 -12 4 1
8 -16 15 -11 4 1
6 -12 12 -10 4 1
4 -8 8 -6 1 2
2 -4 4 -3 1 0

The eigenvalues are 1, ? i, and - 1 with a multiplicity of 3 and only one eigenvector.
The eigenvalues returned from the Laguerre-Hyman algorithm and the number of itera-
tions necessary to compute them are given in Table 1.

TABLE 1

Eigenvalues

Iterations
Real Parts Imaginary Parts

.99999999999961 0. 5

5.93 x 10-13 .99999999999941 6

5.93 x 10-13 -.99999999999941 -

-.99998566379579 2.483376 x 10-5 19

-.99998566379579 -2.483376 x 10-5 -

-1.0000290725328 0. 9

The eigenvalues 1 and ? i are computed to within a few digits of machine accuracy
and the eigenvalues - 1 are computed to approximately cube root of machine accuracy.

On all the many test matrices which have been tried, the Laguerre-Hyman algo-
rithm performed satisfactorily except on those matrices which contained eigenvalues
so ill-conditioned that the first test for convergence could not be passed; that is, the
eigenvalues could not be found accurately to three significant digits. On these matrices,
the iteration count was exceeded and the appropriate error flag was set..

Acknowledgment. The author wishes to thank Dr. Jules J. Lambiotte for the
helpful discussions on vector computers during the course of this investigation.

The author is also grateful to the referee for the valuable suggestions on improv-
ing the manuscript.

Union Carbide Corporation Nuclear Division
Computer Sciences Division
Oak Ridge, Tennesee 37830

1. J. G. F. FRANCIS, "The QR transformation: A unitary analogue to the LR transforma-
tion. I, II," Comput. J., v. 4, 1961/62, pp. 265-271, 332-345. MR 23 #B3143; 25 #744.

2. R. T. GREGORY & D. L. KARNEY, A Collection of Matrices for Testing Computational
Algorithms, Wiley, New York, 1969. MR 40 #6752.

42 ROBERT C. WARD

3. L. M. HOWSER & J. J. LAMBIOTTE, JR., STAR Adaption for Two Algorithms Used on
erial Computers, NASA Technical Memorandum X-3003, June 1974.

4. BERESFORD PARLETT, "Laguerre's method applied to the matrix eigenvalue problem,"
rath. Comp., v. 18, 1964, pp. 464-485. MR 29 #2948.

5. J. H. WILKINSON, The Algebraic Eigenvalue Problem, Clarendon Press, Oxford, 1965.
IR 32 #1894.

6. J. H. WILKINSON & C. REINSCH, Handbook for Automatic Computation. Vol. II,
inear Algebra, Springer-Verlag, New York, 1971.

	Cit r117_c118:
	Cit r120_c121:

